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SUMMARY

This report presents the results of a preliminary feasibility assessment
of InstaIlatlon, operation, and end-of-llfe disposal options for three nuclear

reactor power system concepts applied to a 300-kW growth version of the NASA

space station. The assessment was focused primarily on the ramifications of

nuclear safety and radiation constraints on space station operations. We also

discussed the pros and cons of the three installation concepts and evaluated

the merits of existing and near-term chemical propulsion system concepts for

the reactor end-of-llfe disposal to a wide range of ultimate destinations. The

three concepts investigated were based on existing SP-IO0 program technology

and used tether, slngle-boom, and dual-boom attachment to a projected dual-keel

space station. A total radiation exposure dose of 20 rem was established for
an astronaut's assumed 3-month occupation of the station. This dose consisted

of approximately 75 percent natural background radiation and 25 percent
reactor-attrlbuted radiation. Human-rated shielding configurations were gener-

ated for each concept to provide radiation protection for a projected set of

normal operating activities and locations including on-statlon activity (habi-

tat and laboratory modules), normal and emergency extravehicular activity

(EVA), and shuttle orbiter approach, docking, and departure. Allowable EVA

time for end-of-llfe separation of a shutdown reactor power system was also

considered.

Impulsive (chemical) energy requirements and propulsion vehicle system and

propellant characteristics were identified for six potential final disposal
destinations, ranging from a Iong-llfe, lO00-km Earth orbit to a solar system

escape trajectory. A variety of existing and near-term expendable chemical

upper-stage vehicles, both cryogenic and storable, were studied to identify

their operational payload and Delta-V capabilities. Also, a matrix of one-of-

a-kind propulsion system components and reactor power system payload combina-
tions was evaluated to identify potential attachment, integration, separation,

and radiation safety issues as a function of time of attachment, (i.e., before

reactor startup and after reactor shutdown).

The results of this assessment have generally confirmed the feasibility

of installation, operation, and end-of-llfe disposal for the three concepts

investigated. A number of open issues, however, remain with regard to defini-

tion of space station experiment requirements and the effect of reactor power

system location.

All three attachment concepts were found to be compatible with boost to

lO00-km Earth orbit at the end of llfe with any of the existing chemical pro-

pulsion, shuttle-compatlble upper stages. For this disposal destination we



recommendthe payload-asslst-module (PAM) upper stage be attached to and inte-
grated with the nuclear power system after reactor shutdown. Should higher

energy non-Earth orbit disposal destinations be required, Earth-escape elllptl-
cal solar orbit is the preferred mode. Although the propulsive energy require-

ment is more than an order of magnitude greater than that for a IO00-km Earth

orbit, it can be achieved by the lightweight tether mount concept with any

shuttle-compatlble upper stage vehicle placed in low Earth orbit with a single

launch. The heavier single and dual-boom concepts can also be boosted to Earth

escape but will require one-of-a-klnd propulsion systems that are assembled in

space following separate launches of the liquid propellant and the upper-stage
hardware after reactor shutdown.

From the critical viewpoint of minimizing launch mass for installation and

disposal the tethered reactor power system concept is clearly superior. This

concept is a novel space application of terrestrial electric utility gas-filled

transmission cable technology currently under study at NASA Lewis. The tether

concept achieves its low mass by trading shield mass for reactor-to-space-

station separation distance. Also, the 2-km tether length minimizes radiation

exposures for shuttle approach and departure.

We recommend that the electrolysis of water to produce gaseous oxygen and

hydrogen propellant be investigated to assess potential launch mass savings.
This propellant is attractive for boost to all reactor disposal locations, and

the synergistic operational benefits associated with the use of water on the

space station and volume-constralned shuttle launches may be significant.

INTRODUCTION

A preliminary feas_billty assessment of the integration of reactor power

system concepts with a projected growth space station architecture was con-
ducted to address a variety of potential installation, operational, disposl-

tlon, and safety issues.

A previous NASA Lewis sponsored study (ref. l) evaluated a variety of

nuclear power concepts for space station requirements in the multl-hundred kil-

owatt range and concluded that free-flyer platform reactor power systems were
less attractive then space statlon-attached concepts using structural boom and

tether mounts.

The present study goals were, therefore, to identify and characterize

attractive space statlon-attached reactor power system concepts and assess
their installation and disposition feasibility. The scope of the study was

llmlted to normal installation and disposition operations at the beginning and

end of mission, respectively, and did not consider abort or severe malfunction
scenarios. Installation concepts were defined to include the location and

methods of attachment and detachment of the reactor power system from the space

station. Disposition concepts were defined to include both the final disposal

destination and the propulsion method used.

The study methodology shown in figure 1 was selected to provide a logical

approach for assessing the feasibility of each installation concept with

respect to a matrix of disposal locations and propulsion methods. The approach
used to select installation concepts was based on defining a set of criteria



for a projected nuclear powered growth space station to screen candidate con-

cepts. Selected concepts were then characterized from a configuration and

operational viewpoint, with disposal mass as a key parameter. Disposal desti-

nations that met current aerospace nuclear safety criteria were identified and

characterized in terms of operational and energy requirements with Delta-V

energy requirements as a key parameter. Propulsion methods that met a current
and near-term time frame criterion were identified and characterized from a

payload mass and Delta-V energy capability viewpoint. These propulsion capa-
bilities were then matched against installation concept disposal mass and dis-

posal destination Delta-V energy requirement to assess the feasibility of each
combination.

The study matrix shown in table I consisted of three installation con-

cepts, six disposal destinations, each with one or more trajectory options, and

two chemical propulsion methods.

Identification of reactor power system installation locations on the space

station was based on a projection of architectural growth options for an addi-

tional 300 kWe nuclear power level requirement above an existing lO0 to 300 kWe

solar powered station. This included consideration of reactor power system

location impact on projected In-place solar power systems, payloads, and

occupied station modules, and impact on station and Shuttle operations. A pro-

Jected "Dual Keel" space station configuration assumed to exist prior to reac-

tor power system installation, is shown in figure 2. The locations of In-place

solar power systems, payloads, crew and laboratory modules, etc. are indicated.

Reactor power system location impact on additional space station elements, such

as free-flyers and coorblting platforms, was assumed to be minimal because of

the relatively large separation distances involved.

Three attractive installation concepts were identified for further charac-

terization. They are:

(1) A single 300 kWe reactor power system using instrument-rated shadow

shleldlng, mounted on a 2 km long tether attached to the station upper payload
boom.

(2) A single 300 kWe reactor power system using shaped 4 _ man-rated
shielding, mounted on a 60-m boom extension below the station lower payload

boom.

(3) A dual balanced 150 kWe reactor power system each using shaped 4

man-rated shielding, mounted on lO0-m boom extensions of the station crossbeam.

The reactor power systems proposed were based on the SP-IO0 Program

Thermoelectric baseline (SIGe-GaP) conversion concept with modifications in

power level and shielding and boom configuration as required for the different
installation locations. The two SP-IO0 reactor power system configurations

assumed for this study are shown in deployed form in figure 3.

Identification of disposal destinations was generally based on the appll-

cation of the aerospace nuclear safety philosophy of "delay and decay." This

philosophy provides for sufficient isolation time such that radioactivity
levels are reduced to meet radiation safety standards before exposure to the

population. This can be accomplished by placing a shutdown reactor power

system in a Iong-llfe orbit. Alternatively, the reactor power system can be



disposed to solar or lunar destinations that can provide a zero or near-zero
probability of Earth reencounter, and therefore provide infinite Isolation time
by precluding exposure to the Earth's populace. In addition, all destinations
except solar impact and solar system escape allow for future reactor retrieval,
If desired.

Six dtsposal destinations were identified for further characterization.
They include four non-Earth encounter destinations, one long-life orbit
(1000 km) destination, and one Earth return destination. Although the Earth
return destination does not meet the delay and decay safety philosophy, It was
included for purposes of comparison.

A variety of trajectory options have been characterized for all non-Earth
encounter destinations and a controlled reentry and shuttle recovery option
have been characterized for the Earth return destination.

Identification of propulsion methods was based on consideration of current
and near-term state-of-the-art technologies. Two gener!c hlghthrust chemical
propulsion concepts were characterized to cover a wide range of payload mass
and potential destination capabilities. The propulsion concepts included high
performance cryogenic propellants and both liquid and solid storable propel-
lants for a range of integrated and nontntegrated system options. Solar and
nuclear powered electric propulsion vehicle concepts were not Included in this
study because of their relatively immature vehicle system technology at this
time. However, their significant increase In payload capability to hlgh
Delta-V disposal destinations plus their potential for near-term technology
availability warrants further evaluation in future reactor power system dis-
posal studies. Of particular interest are feasibility studies of disposal
scenarios that use the space station reactor power system to provide electri-
city for an integrated on-board electric propulsion vehicle. This concept has
the potential for simple low cost disposal, but further study of systems inte-
gration issues is required.

INSTALLATION CONCEPTS

A common set of ground rules was initially applied to all installation

concepts to provide a consistent basis for comparison. These included the

foilowlng:

(I) All concept configurations must maintain the existing space station

center of gravity location while minimizing impact on station payloads and/or

operations.

(2) A uniform and consistent exposure dose rationale, to be used for all
installation locations, shall be arbitrarily based on a maximum total biologi-

cal radiation exposure dose of approximately 20 rem/quarter year for all normal

space station activities.

(3) Boom mount installation concepts shall use man-rated shaped shield

configurations employing a shadow cone to shield space station activity Ioca-

tions and a spherical geometry for all other activity locations.



(4) Boom-mounted installation concepts shall use space station 5 m square
booms with a lineal mass of 17 kg/m, and the tether concept shall use a O.1 m
diameter, 2 km long tether with a mass of 1400 kg.

(5) Slngle 300 kWe reactor power systems will be based on an 8 MWt reactor
power level with reactor dimensions of 88 cm long by 69 cm diameter.

(6) Dual 150 kWe reactor power systems will be based on a 4 MWt reactor

power level wlth reactor dimensions of 74 cm long by 55 cm diameter for each

system.

As the study progressed it became clear that further definition was

required for the first two ground rules. The first ground rule, requiring

preservation of the original space station center of gravity, will signifi-

cantly affect the overall configuration of both the single power system tether
mount and the single power system boom mount installation concepts; the dual

boom concept Is inherently balanced. They will both require large ballast
moments to offset their unbalanced power system locations and masses. The

approach taken herein was to provide a nonoperatlng space reactor power system
as ballast mass. Thus, a replacement reactor power system would already be

on-board the space station, and replacement time would not be subject to

shuttle launch schedules. No attempt was made to evaluate the potential rell-

ability benefits of thls approach.

In the case of the tether mount concept, space station center of gravity

location is preserved by mounting a space deployed nonoperatlng tether and

reactor power system directly opposite, and In-llne with, the operating system.

For the boom mount single reactor power system concept It was not possible to

provide an opposed, In-11ne, equal mass system because of potential interfer-

ence wlth upper boom payload functions. Therefore a longer moment arm, lower

mass approach had to be used in combination with a spare undeployed reactor

power system location on the space station. Additional details of ballast mass

and location are provided In the appropriate installation concept sections of

this report.

_he second ground rule, meeting a 20 rem/quarter biological exposure dose

for all normal space station activities, had a number of issues that needed
further resolution. First, a definition of normal activities was required.

For each activity it was then necessary to determine location, time spent at

1ocatlon, existing In-place shielding, and finally, the natural background blo-

1oglcal dose rate, including attenuation by existing shielding. Existing

shielding Includes attenuation by space station and shuttle skin (wall) thick-
ness for on-statlon and In-shuttle locations, and astronaut space suit visor

thickness for EVA operations. The results of these definitions and estimates

are summarized in table II. Realistic locations and reasonable exposure times

for each activity were selected and defined in sufficient detail to provide
conservative dose estimates.

For example, operations in space station were assumed to account for over

98 percent of each astronaut's time. This includes all activities within the
confines of space station modules wlth local shielding of 2.4 g/cm 2 to reduce

natural radiation levels to 7.1 mrem/hr.

EVA operations were subdivided Into two distinct types occurring at dlf-
ferent locations for the boom mounted installation concepts. Of the 34.2 total



EVAhours allocated, 32.2 hr were assumedto occur within the confines of the

man-rated shadow shield provided for each boom mounted installation concept.

A discussion of the boom mount shield configurations used in this study is

presented at the end of this section. These are referred to as routine EVA

operations from a radiation dose standpoint since reactor-attrlbuted dose rates
are less than natural background levels. For the tether mount installation

concept, all EVA operations are in a low dose rate environment and are there-
fore considered routine.

Emergency EVA operations were defined to take place in the relatively high

dose rate regions outside the shadow shield cone angle of the boom mounted

installation concepts. A 2 hr exposure duration time was assigned to this

activity which was assumed to occur in the highest dose rate region 300 m from

the space station center of gravity. Natural background radiation dose rates
for all EVA operations were attenuated to 9.0 mrem/hr by the assumed 0.9 g/cm 2

shielding thickness of the astronaut space suit visor.

Shuttle orbital operations including approach, docking, separation, and

departure, also required further definition for dose calculations. A two part
scenario for approach and docking was based on calculatlonal data supplied by

NASA/JSC. l The first part consists of a single shuttle maneuver that begins

about 15 km downrange from the space station and ends with a momentary stop

300 m uprange from the space station on the orbital track. The second part
consists of a multiple burn and coast flight profile from the 300 m point to

final attachment at the docking port. From a radiation dose standpoint the
time duration allotted for the initial maneuver to 300 m is negligible; the

major dose contribution occurs over the last 300 m until the shuttle enters the

low dose rate region inside the shadow shield cone. Shuttle flight profiles
over the final 300 m were purposely assumed to traverse the highest dose rate

regions for each boom mount installation concept. These profiles differed from

those provided by NASA/JSC, but were adopted to provide conservatism in expo-
sure dose. For the tether concept all final flight paths are equivalent from

a radiation dose standpoint since natural background radiation is the major

dose contributor.

A 0.68 hr total approach and docking time from 300 m, as calculated by

NASA/JSC was used for all flight profiles. A 20 percent contingency was added

to yield an O.B2 hr duration for approach/dock/departure. The 3.3 hr duration
shown in table II represents two shuttle approach/dock/departure operations

assumed to occur every 90 days.

The shuttle fly-by activity was defined to represent, for example, a

"wave-off" from an attempted rendezvous. A total time of 0.4 hr was assigned

to this activity which is assumed to occur at the momentary shuttle stop Ioca-

tion of 300 m from the space station. For purposes of dose rate calculatlons

a circular fly-by maneuver at a 300 m radius around the space station was

assumed equivalent to a stationary hold at 300 m.

Also shown in table II are the natural background biological dose rates

for all activities. These dose rates are based on a combination of recent

shuttle flight 51J (October 3, 19B5) measurements inside crew quarters, and

Ipersonal communication from C. Anderson, NASA Lyndon B. Johnson Space

Center, Houston, Texas, October 15, 19B5.



calculations performed at NASA Johnson Space Center I for a 500 km orbit at

28.5 ° inclination. Previous assumptions used for natural background radiation

in reference l apparently overestimated EVA dose rates by a factor of about 50,

while underestimating In-shuttle and In-station dose rates by a factor of 2.

The actlvlty/Iocatlon time durations and natural background dose rates
shown in table II were combined wlth selected reactor shield configurations to

provide a total exposure dose of 20 rem/quarter for each installation concept.

The shielding configuration selected for the tether mount concept was based on
a modification of the current SP-IO0 Instrument-rated design and will be

described In the 300 kWe tether mount installation section. Shielding config-

urations for boom mount reactor power system concepts were generated by a man-

rated conlcal/spherlcal shaped geometry computer program developed at NASA

Lewis. This program utilizes layered neutron and gamma ray shields to minimize

secondary gamma ray dose rates. Reactor source input is limited to spherical

geometry so that equivalent volume spheres were substituted for actual cylln-

drlcal reactor geometries.

Variable geometry subroutines allow combinations of spherical and conical
sections to meet varying dose rate requirements at different locations to pro-

vide minimum mass shaped shield geometries. For the boom mount installation

concepts a conical shadow shield geometry was used to provlde low dose rates
within the confines of the space station and a spherical shield geometry was

used for emergency EVA and shuttle operations. The dose rates specified for

each activity location were determined by an iteration procedure to arrive at

a total integrated dose of 20 rem for all normal activities for each installa-

tion concept. The layered shield thickness values calculated by the code are

based on an algorithm generated from a few-group Monte Carlo calculation and

are conservative. The resulting shield mass, however, is not expected to be

overly conservative since the calculation does not account for realistic mass
additions that would be imposed by an engineered shield design.

Finally, it should be noted that at the time of this writing a recommended
astronaut dose limit was under review by NASA and other radiation safety

groups. The arbitrary selection of 20 rem/quarter for this study was not meant

to prejudge the dose recommended by this review. In addition, the high shield
attenuation factors used cause the natural space background radiation to be the

dominant source of exposure wlth reactor-attributable dose accounting for only
one-fourth of the total. Therefore, any recommended changes In exposure level

will not significantly affect the shield mass results of this study.

The next three sections of this study present the configuration and oper-

ational characteristics of each selected installation concept. A summary sec-

tion is included to provide an overall comparison of concept characteristics.

300 kWe TETHER MOUNT INSTALLATION

Although this installation concept relies on a relatively new method of
power transmission in space, a recent tether conceptual design and application

study (ref. 2) established the feasibility basis for its consideration In this

Ipersonal communication from A. Hardy, NASA Lyndon B. Johnson Space

Center, Houston, Texas, October 15, 1985.



sLudy. The tether mount concept has the potential to provide both the lowest
launch mass and the lowest disposal mass of all the installation concepts iden-

tified. This significant advantage is achieved by trading reactor power system

shield mass for separation distance via a long tether.

The concept selected for further characterization was based on a single

300 kWe reactor power system attached to space station by a two kilometer long

by O.l-m diameter tether which is also an electrical transmission llne. The

two kilometer separation distance selected allows the exlstlng SP-IO0

Instrument-rated shield design to serve as a man-rated configuration for all

locations near the space station. However, two installation issues were Iden-

tlfied that required additional definition; shielding requirements for shuttle

approach and departure maneuvers, and potential interference of the reactor

power system with payloads located on the station upper boom.

The shield configuration issue arises from the fact that the existing
SP-IO0 instrument-rated shadow shield design is based on a narrow 17 ° shadow

cone half angle. The resultant shadow cone, at a 2-km separation distance,

provides a reactor-attrlbutable dose rate of 2.3 mrem/hr over a 1.17 km2 area

with a diameter of 1.2 km at the space station orbit plane. Although this low
dose rate covers sufficient area for all In-statlon and EVA activities, the

shield geometry does not provide a large enough shadow for either shuttle

approach or some possible fly-by maneuvers. Therefore, the SP-IO0 shield geom-

etry was modified to include a tapered side shield, or wing. The wing provides

a uniform 2.3 mrem/hr dose rate along the space station orbital plane out to

300 m, which is sufficient to limit all shuttle operation doses to negligible

levels. A total modified shield mass of 2300 kg was estimated of which 800 kg

is due to the additional wing. The shield configuration used for the tether

mount installation is shown in figure 4 and the resulting radiation exposure

levels are shown in table III. Total integrated dose for all normal activities

is estimated at 20.37 rem.

The issue of potential power system interference wlth payloads on the

upper boom is due to their functional requirements. The proposed payloads con-
sist of experimental observatories which may require an unobstructed vlew of

deep space, and the presence of an operating reactor power system within their
field of view may be unacceptable especially from an infrared radiation aspect.

However, consideration of both tether detachment and shuttle approach/departure

flight paths have led to a preliminary selection of upper boom attachment for

the operating reactor power system.

The final configuration selected for the 300 kWe tether mount concept is
shown to scale in figure 5, and the corresponding mass statement is given in

table IV. The flnal configuration includes the required ballast in the form

of an equal and opposite deployed spare (nonoperatlng) reactor system located
at the end of a two kilometer tether below the space station. This ballast

conflgurat_on was selected over other potential ballast locations within the
confines of the space station framework from a simple mass penalty rationale.

Locating the required ballast moment arm of 21 by lO6 kg-m at the furthest

point below the station's center of gravity on the lower payload boom, would

have required an unacceptable ballast mass of about 4xlO 5 kg. The selected
ballast location should not pose any major interference penalties for communi-

cation payloads located on the lower boom.

i%_w_ __-_,, tc_ _c_
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Two options appear feasible for detachment prior to final disposition. In
the first, the tether would be detached from the shutdown reactor power system
at the power system end and It would remain attached to the space station.
Detachment must be accomplished by remote teleoperators or built-In separation
devices because hlgh dose rates preclude manned EVA operations for this option.
Since this option leaves the tether attached to the space station for reuse
wlth the replacement reactor power system, a potential mass savings of 1400 kg
for both disposition and subsequent launches would result. However, if the
tether is damaged by radiation or meteoroids tt can be detached at the space
station end and disposed of with the power system. This option was selected
even though It has a 1400 kg disposal mass penalty. The benefit of tether
detachment at the space statlon end is the elimination of all radiation dose
issues associated with detachment operations. For example, total dose rates
at the space station immediately after reactor shutdown are at background
levels of 9.0 mrem/hr. Thls low dose rate permits over 100 hr of manned EVA
operations per additional rem exposure for detachment operations.

300 kWe BOOM MOUNT INSTALLATION

This concept was identified for consideration because it preserves the

space station's vertical gravity gradient with a single 300 kWe reactor power

system attached to a conventional boom. The power system Is located on a 60-m

boom extending downward from the Station's lower payload boom and is llne

oriented along the local gravity gradient. This location is sufficiently

removed from upper boom payloads so that interference should be minimal.

The shielding configuration for this concept Is based on the man-rated

conlcal/spherlcal shaped shield design described previously. The shield con-

figuration selected for thls installation concept provides a reactor-
attributable dose rate of 1.5 mrem/hr at ll5 m inside the shield shadow at the

habitat location and a dose rate of 200 mrem/hr at 160 m everywhere outside the

shield shadow. The reactor power system - space station geometry relationship

is shown to scale In figure 6, and the resulting reactor-attrlbutable dose

rates are shown In figure 7. The shield geometry consisted of a combined 30°

half-angle cone shadow shield and a 330 ° spherical shield. Shield geometry and
dimensions are shown in figure 8. The resulting radiation exposure levels for

all activity locations are shown in table V. It Is important to note the rela-

tlvely high reactor-attrlbutable dose rates estimated for activity locations
outside the shield shadow cone; EVA, shuttle approach/dock/departure and

shuttle fly-by. These hlgh dose rates Ere of some concern even though total

integrated dose meets the 20 rem/quarter ground rule.

The 166 mrem/hr dose rate for emergency EVA occurring outside the shadow

cone was conservatively based on a location 185 m from the reactor power system

and in the highest dose rate region 300 m directly below the space station

center of gravity.

The 366 mrem/hr average dose rate for shuttle approach/dock/departure

results in an integrated 555 mrem exposure dose to shuttle crew during each

0.82 hr approach and departure operation when a man-rated shield specification
of 200 mrem/hr at 160 m Is used. Shuttle approach/departure flight paths

within 300 m were assumed to be along the space station orbital track outside

the shadow shield. This trajectory takes the shuttle through the highest dose

rate regions and thus provides conservatism In integrated dose results. The



total dose of l.ll rem is based on two approach/departure operations per

quarter. The shuttle fly-by activity was estimated to add an exposure dose of

only 0.03 rem while circling the space station or remaining stationary at a
distance of 300 m on the orbital track. The total integrated dose for the

single 300 kWe boom mount concept was 20.06 rem, within 2 percent of the
300 kWe tether mount dose.

Two installation issues have been identified for this concept. The first

is the location of ballast mass required to maintain the existing space station

center of gravity location, and the second is potential reactor power system
interference wlth lower boom payloads. The first issue required further defi-

nition because the use of an equal and opposite spare reactor power system

attached to the upper payload boom will probably cause unacceptable visual

interference with payload functions. The proposed solution uses two ballast

locations.

A spare undeployed reactor power system is located under the upper payload

boom within the space station framework, and a second smaller ballast mass is
located above the station at the end of a long tether. A l-km tether length

was selected for the additional ballast location. The proposed use of multiple

thin monofilament llne tethers and the low volume (about 2.5 m3 for water)

of the additional ballast should not interfere with upper boom payload func-

tions. The second issue, that of interference with lower boom payload func-

tions, cannot be resolved until these functions are defined further. However,
it is estimated that lower boom payload observation and viewing requirements

will not be as stringent as those for upper boom payloads.

The final configuration for the 300 kWe boom mount concept is shown to

scale in figure 9, and the corresponding mass statement is given in table VI.

The proposed detachment scenario for this installation concept was based

on leaving the 60-m boom attached to the space station and detaching the shut-

down reactor power system by either manned EVA, remote teleoperator or

built-ln separation devices. In order to evaluate potential radiation issues
associated with manned EVA the radiation dose rates and allowable EVA times as

a function of separation distance for two arbitrary shutdown times were calcu-

lated and are shown in table VII. The resulting allowable time estimates for

manned EVA are presented in terms of hours allowed per each additional rem of

exposure dose. Detachment of the reactor power system could be accomplished

at any point on the structural boom location within the confines of the shadow
shield at a separation distance of up to 60 m. At a lO m separation distance

natural background radiation is the major dose contributor and about lO0 hr of

EVA operations per rem would be allowed after a reactor shutdown time of
l month. This result is equivalent to that obtained for the tether mount con-

cept immediately after reactor shutdown.

DUAL 150 kWe BALANCED BOOM MOUNT INSTALLATION

lhls installation concept differs from the previous 300 kWe single reactor

concepts by employing two operating 150 kWe power systems thereby providing an

added measure of operating reliability. Location of each reactor power system
on a lO0-m extension of the space station crossbeam preserves the station's

center of gravity without the use of a nonoperatlng power system as ballast.

lO



lhls location is sufficiently removed from all space station payloads so that

interference with payload functions is minimal.

The total reactor to-habltat separation distance of 165 m required a 20 °

shield cone half-angle to shadow the entire space station. The installation

geometry and dimensions used for this concept are shown in figure lO. Dose

rates inside the shadow shields of both reactor power systems were specified

to provide a total reactor-attrlbutable dose rate of 1.5 mrem/hr at the inter-

section of the space station crossbeam and vertical centerllne; the same specl-

flcatlon used for the single 300 kWe boom mount concept. A dose rate of
ll5 mrem/hr at 160 m was selected outside the shadow shield of each reactor

power system to limit total integrated dose to 20 rem per quarter. Shield

geometry and dimensions generated by the NASA Lewis manned shield code are

shown in figure II.

Figure 12 presents a dose rate contour plot for the dual boom installation

concept. This plot shows reactor attributable dose rates within each shadow

shield cone, outside each shadow cone, and dose rates in the shared region out-

side both shadow cones. The resulting radiation exposure levels for all actlv-

Ity locations are shown in table VIII. As in the case of the single 300 kWe

boom mount concept, relatively high dose rates were estimated for all activi-

ties outside the shadow shield cones. The 178 mrem/hr dose rate for emergency

EVA operations was conservatively based on a location 135 m from either reactor

power system and in the highest dose rate region 300 m from the space station
center of gravity along the orbital track. The 371 mrem/hr dose rate for

shuttle approach/dock/departure was conservatively based on a shuttle flight

path along the orbital track Just outside the shadow shield of either reactor

power system. This trajectory yields an average dose rate more than double
that obtained with a trajectory along the station's vertical center llne.

Shuttle approach and departure times of 0.82 hr each were used to calculate the

total dose of 1.22 rem, assuming two approach/departures per quarter. Shuttle

fly-by at 300 m from the space station contributed only 0.09 rem for this

0.4 hr duration activity. The total integrated dose for the dual 150 kWe boom

mount concept was 20.24 rem which is within one percent of both the single
300 kWe boom and tether mount doses.

No significant installation issues have been identified for this concept.

Of some concern, however, is the two--axls rotational capability of the space

station crossbeam. This capability is required for solar power system point-

ing, and could limit the moment arm capability for high mass reactor power

systems on long boom extensions of the crossbeam. Also, the possibility of

existing rotating solar power systems operating in parallel with reactor power

systems may require the reactor power system to rotate also. This does not

appear to present any major operational problems and may actually be beneficial

from a radiation heat rejection standpoint.

lhe final configuration selected for the 150 kWe dual boom concept

requires no additional ballast mass and was shown to scale in figure lO. The

corresponding mass statement Is given in table IX. A significant feature of

this concept is the capability of splitting both launch and disposition mass

into two separate packages, each consisting of a complete 150 kWe reactor power

system.

The proposed detachment scenario is similar to that described for the

single 300 kWe boom mount installation. The lO0 m boom extensions would remain
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attached to the space station and the shutdown reactor power systems would be
detached. As shown previously on table VII, manned EVA is feasible for the
detachment operation at a nominal lO m separation distance.

SUMMARYOF INSTALLATION CONCEPTS

Three installation concepts that were designed to meet a uniform set of

integrated criteria for a projected 300 kWe nuclear growth space station have

been identified and characterized. Each concept has been configured to exhibit

the following requirements:

(I) Minimal interference with space station operations and payloads.

(2) Maximum total radiation exposure dose of 20 rem/quarter year to space
station crew for a uniform set of normal activities.

(3) Preservation of the space station center of gravity location.

A mass summary for the three selected installation concepts, including an
estimate of number of shuttle launches required, is shown in table X. Since

all launch masses exceed the projected shuttle capability of 18 000 kg each

concept was broken down into multiple launch packages. It was assumed that

each shield could be split into two sections, one of which is highly integrated

with, and attached to, the reactor. The two shield sections are further

assumed to be designed for on-orblt attachment and assembly. These assumptions

provided the minimum number of shuttle launches indicated.

Launch masses do not include any allowance for on-board integrated propul-

sion system hardware. Although this mass may be relatively small, the trade-

off between integrated versus nonlntegrated propulsion systems Is an important

one. Thls subject will be treated in detail later in thls study.

DISPOSAL DESTINATIONS

The disposal destinations described herein have been selected to provide

characterization of a representative group of potential locations for shutdown

reactor power systems; they do not represent the results of a selection process
to identify preferred locations. Also, although abort or malfunction scenarios

were beyond the scope of this study they could pose substantial safety and

recovery issues. With the exception of the Earth return cases, all destlna-

tlons studied will provide shutdown reactor decay times greater than 300 years.
Some destinations also exhibit highly elliptical orbits with almost zero prob-

ability of intersection wlth the Earth's orbit.

The six destinations identified in table I, were characterized from an

energy (Delta-V) and operational requirements vlewpolnt. The advantages and

disadvantages of each destination are described and a summary comparison is

provided, lhe operational characterization of each destination Included the

following: number of burns, time interval between burns, specific launch time

and guidance requirements, and retrieval availability. The last item,
retrieval availability, or potential for reactor power system recovery, may be

of interest from a post-operatlon evaluation aspect. All other items are of

interest from a propulsion system operational reliability aspect.
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Long Life Earth Orbit

An Earth orbit altitude of 1000 km has been selected to conservatively
satisfy the reentry safety requirement of long orbital lifetime. Thls orbit
will provide at least a 300 year decay tlme for ballistic coefficients of typi-
cal SP-IO0 class reactor power systems.

To achieve an increase In circular orbital altitude from 500 to lO00 km,

two propulsion maneuvers are required. After the reactor power system payload
has been detached from the space station the propulsion system imparts a

Delta-V of 130 m/sec to the payload, placing it in an elliptical transfer

orbit. After about a l hr coast time up to the lO00 km altitude, a second
burn Is initiated with a Delta-V of 130 m/sec to circularize the orbit. In the

event of a second burn propulsion failure, the resulting elliptical orbit would

have an orbital decay llfe time exceeding 3 years, which should be sufficient

to permit corrective action.

The advantages of employing the hlgh Earth parking orbit are:

(I) A very low Delta-V requirement of 260 m/sec.

(2) Insertion can be initiated at any calendar time.

(3) A wide variety of propulsive methods can be used.

(4) A simple, on-board event timer constitutes all of the guidance and

control required.

(5) The reactor is available for future retrieval, If desired.

The only disadvantage identified for this destination Is the requirement

for two propulsion burns to insert and circularize the orbit.

Solar Orbits

Solar orbits identified for characterization are: (1) elliptical Earth

escape, (2) circular heliocentric orbits at greater and lesser than l.O Astro-

nomical Unlts I (AU), and (3) planetary swing-bys. These orbits retain the

disposed payload in the Solar System for potential future retrieval while pro-
viding essentially infinite delay and decay time.

Earth escape. - lhls highly elliptical orbit about the Sun can be accom-

plished by a single burn that provides a Delta-V of about 3200 m/sec. The ad-

vantages of this solar orbit approach are:

(I) a moderate Delta-V requirement of 3200 m/sec,

(2) insertion can be initiated at any calendar time,

(3) single burn propulsion,

(4) no spacecraft guidance required, and

(5) reactor available for future retrieval, If desired.

IAU-mean distance of Earth from the Sun, about 1.5xlO 8 km.
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Circular heliocentric orbits. To provide a clear, positive separation

from the Earth's orbit about the Sun the reactor power system could be placed

in essentially circular orbits of greater and lesser than 1.O AU 1. For this

study the l.lO and 0.90 AU orbits were selected to provide examples of the

representative Delta-V's required for circular orbits that do not cross the
Earth's actual elliptical heliocentric orbit. For each orbit, two burns are

required for a total Delta-V of about 4500 m/sec wlth a coast period of about
16 months between burns. The advantages of this solar orbit approach include:

(1) initiation at any time, (2) power system available for future retrieval if

desired, and (3) simple on-board event timer required for guidance.

Disadvantages include the requirement for two propulsive burns and a mod-

erately high Delta--V of 4500 m/sec.

P1anetar_y swin_b_. --Destinations in highly elliptical orbits that do
not intersect Earth's orbit were also investigated. These consist of orbits

achieved by using the gravitational attraction of planets such as Mars and
Venus. The total Delta-V required for each case, however, is about the same

as that required for the circular heliocentric orbits, 4500 m/sec. A single
initial burn is required, a second burn is eliminated by the use of the respec-

tive planetary gravitational attraction to complete the maneuver. In addition,

the swing-by cases will require up to a 2 year time interval between optlmal
initiation of reactor disposal operations to take advantage of the relative

location of the Earth with respect to these planets to minimize trip time. The

advantages of this solar orbit approach are the same as those for circular

heliocentric orbits plus inclusion of only a single burn requirement. Disad-

vantages include the same moderately high Delta-V requirement of 4500 m/sec and

up to a 2 year interval between separation and launch.

Solar System Escape

Several solar system escape scenarios were examined; direct and Jupiter

swlng-by. This destination also provides a permanent, nonretrlevable disposal
location.

Direct. - The direct solar system escape can be achieved with only a

single propulsive burn. The reactor power system payload is placed in a hyper-

bolic trajectory In the plane of the ecliptic, and can be launched at any cal-
endar time with minimal guidance required. The major disadvantage of this

permanent dlsposa] scenario is that it requires a large Delta-V of about
8?60 m/sec which severely limits the choice of a propulsion scheme.

J_J__Jterswlng-b_. - A lower energy variation of the direct escape destina-

tion can be employed by guiding the package into a trajectory approaching, and

then swinging by, Jupiter. This reduces the total required Delta-V to

7600 m/sec, but requires a mld-course correction burn maneuver to achieve the

desired close proximity behind Jupiter. Precise launch times to Jupiter are

also required and are limited to one specific time per year because of the

relative poslt_ons of Earth and Jupiter.

Solar impact. - An addltlonal permanent, nonretrlevable destination is the
Sun, itself. Two variations of solar impact were investigated; direct and

Jupiter sw_ng-by.
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Direct. - To achieve direct solar impact a single burn Delta-V equal and

opposite to that of the Earth's mean orbital velocity of 29 800 m/sec is

required. This extremely high energy requirement causes this solar impact var-

iation to be a nonviable option.

Juplter swlng-b_. - With the added complexity of additional spacecraft

guidance and mld-course correction solar impact can be achieved with a greatly

reduced Delta-V of 7600 m/sec. In this concept the propulsion vehicle is

guided to pass near the "front" of Jupiter. Thus, Jupiter's orbital velocity

nearly cancels that of the vehicle resulting in a near zero velocity with
respect to the Sun, and subsequently the payload impacts the Sun. Thls method,

however, Is limited to about a once-a-year launch opportunity when the Earth

and Jupiter are In optimum positions relative to one another.

Lunar Landing

A potentially useful destination for the reactor power system would be a
remote location on the Moon. In this approach the payload would be soft landed

at the desired site. A Delta-V of 4000 m/sec would be required to acquire a
lunar orbit and then a second Delta-V of about 1800 m/sec would be required for

a precision soft landing on the Moon. An on-board event timer would provide

sufficient guidance accuracy to place the reactor power system within the
desired area.

One potential advantage of this destination is the possibility of reusing

portions of the intact reactor power system for future lunar missions. At the

present time there does not appear to be any policy prohibiting the controlled

deposition of nuclear (fissile) material on the moon; however, an examination

of potential accident modes and consequences Is needed to assess this option.

Earth Return

In the event that it becomes necessary to return the reactor power system

to Earth for scientific, economic, or political reasons, several return con-

cepts were examined. These concepts do not maintain the generally accepted

aerospace nuclear safety philosophy of delay and decay, however, they have been
evaluated for reasons of completeness and study comparison. Two cases were

considered: (1) intact controlled reentry of the reactor power system landing

at a preselected remote landing area, and (2) return of the (stowed configura-

tion) reactor power system in the shuttle.

Controlled reentry. - Thls Earth destination option requires reentry with

a single burn expendable propulsion system which includes an on-board event

timer guidance mechanism. With the very low Delta-V requirement of about

150 m/sec the package is easily returned to Earth. The preselected impact area

could be over deep ocean or a remote free-world land location where final

reentry could be accomplished wlth parachutes. The transit tlme to fully
deorblt is not critical, and the fuel requirements of the propulsion vehicle

are minimal. However, a detailed examination of potential accident modes and

their consequences from both a nuclear safety and safeguards aspect Is required

to assess thls option.
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Shuttle return. - A second method of achieving a controlled Earth return
destination is with the use of the shuttle. In this method, the shutdown reac-

tor power system must be disassembled and reconflgured to the launch configura-

tion for stowage in the shuttle payload bay. This appears to be a major

technical issue requiring consideration of at least the following:

(1) disassembly of reactor power system to meet shuttle mass limits

(2) refoldlng or removal of radiator sections

(3) location of reactor and shield to provide shuttle crew radiation

protection

(4) location of reactor power system and possible additional ballast to

meet shuttle center-of-gravlty requirements

(5) removal of reactor decay heat in shuttle bay

Overriding these major technical issues is the question of shuttle crew
safety. For example, even assuming a safe landing, a failure of the decay heat

removal system or a hard landing impact could result in release of liquid metal

into the shuttle bay. Based on these concerns, and the consideration of possi-

ble accident scenarios the shuttle return option does not appear to be either
viable or desirable.

SUMMARY OF DISPOSAL DESTINATIONS

lhe results of the characterization of all of the disposal destinations

and are shown in table XI which summarizes the energy requirements and opera-
tional characteristics of each destination. In terms of energy requirements

alone, both the long llfe orbit and Earth return destinations are clearly

superior. However, if the operational advantages of a single burn or maneuver

are of interest, the Earth escape solar orbit destination is attractive. It
combines moderate energy requirements with a single burn capability, and no

requirement for launch time or guidance. Another criterion of potential inter-
est is retrieval availability at some future time. All destinations except

solar impact and solar system escape have this capability. Critical safety
issues associated w_th failure to achieve a desired disposal destination need

to be assessed _n future studies.

CHEMICAL PROPULSION CAPABILITY AND INIEGRAIION CONCEPTS

lhe assessment of chemical propulsion capability includes consideration

of caIculatlonal methodology and integration concepts and a summary of results.

The methodology section describes the analytical basis for evaluation of pro-

pulsion capability and provides a generalized quantitative assessment of

propellant mass requirements as a function of payload mass and disposal desti-

nation. These results were then applied to the complete matrix of propulsion

systems and payload integration scenarios to assess potential feasibility
issues. The summary section provides recommendations of attractive integration

concepts for high energy disposal destinations from an operational viewpoint.

Also, as discussed in the Disposal Destinations section, assessment of issues
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assocl,lted with disposal vehlLle failure or malfunction was considered to be
beyond the scope of thls study and needs to be evaluated in future studies.

Methodology

The method used to characterize chemical propulsion methods was based on
the application of the classic two-body problem equation to compare dlsposal
destination required velocity increment wtth payload capability. The use of
this approach limits application of the results to high thrust propulsion vehi-
cles where changes in velocity are Impulsive, or instantaneous. In addition,
this generic approach is independent of the type of chemical propellant used.
Figure 13 presents selected solutions of the following expression for charac-
teristic velocity increment, i.e., the velocity imparted to a body as the burn-
lng time approaches zero, as a function of payload mass fraction:

Delta-.V - -9.815Isp_n 1 MF - 1

where

Delta-V = veloclty increment, m/sec

Isp

MF

= specific Impulse, sec

= propellant mass fraction

WL

WT

= reactor power system disposal (payload) mass, kg

= total initial vehicle mass, kg

and

WT = WL _ Wp _ WH

MF = Wp/(Wp , WH), assumed to be 0.85

where

Wp = propellant mass, kg

WH = vehlcIe hardware or burnout mass, kg

Specific impulse values of 450, 350, and 300 sec were selected to respec-

tively represent: a projected high performance cryogenic propellant, a pro-
Jected high performance storable propellant, and a state-of-the-art performance

storable propellant. Also shown on figure 12 are the Delta-V energy require-

ments for specific destinations ranging from circular lO00 km Earth orbit to

solar system escape or solar impact. These results indicate the relative ease

of achlevlng a 1000 km Earth orbit destination with high payload mass fraction

propulslon vehicles; higher energy destinations will require vehicle concepts

wlth payload mass fractions below 0.3. The high payload mass fraction vehicles

are well represented by shuttle-compatible propulsion vehicle systems as shown

in table Xll which lists the propulsion characteristics and capabilities for
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some expendable cryogenic and storable propellant vehicles. Payload mass frac-
tions at maximum propellant capacity are also shown for each of the three reac-

tor power system disposal masses.

The results shown in figure 13 and table XII provide the basis for the

conclusion that any shuttle-compatlble upper stage vehicle can thrust any of

the reactor power system disposal payloads into a TO00 km Earth orbit with an

orbital decay time exceeding 300 years. However, should higher energy destina-

tions be required, additional propellant capacity is needed. Therefore, an

evaluation of one-of-a-klnd expendable propulsion vehicles using high perform-
ance storable and cryogenic propellants was conducted up to a maximum propel-

lant capacity sized to meet a solar system escape destination. The results for

a constant propellant mass fraction of 0.85 are shown in figure 14 for storable

propellant vehicles with specific impulse of 350 sec, and in figure 15 for cry-

ogenic propellant vehicles with specific impulse of 450 sec. Both figures show

propellant mass requirements for disposal payload masses up to 50 000 kg as a
function of destination Delta-V with the disposal payload masses for each

installation concept identified. The propellant mass requirements for the

lO00 km Earth orbit destination range from 500 to 3000 kg, again indicating the

relative ease in achieving this destination. For the Earth escape elliptical

solar orbit destination, propellant mass requirements range from 14 000 kg to

about 88 000 kg. Table XIII shows the propellant mass launch requirements for

this destination for each installation concept in terms of number of shuttle

launches needed. These results show that a single shuttle launch requirement

limits this destination to the tether concept; both boom mount concepts require

two or more shuttle launches.

PROPULSION INTEGRATION

lhe results presented have provided a quantitative assessment of propel-

lant mass requirements as a function of payload mass and destination Delta-V.

However, there are a number of propulsion integration issues that will strongly
affect the overall assessment of chemical propulsion capability.

An investigation of these issues was conducted by examining potential pro-

pulsion system and payload integration scenarios as a function of time of inte-

gration. Based on the assumption that the reactor power system is installed on

space station prior to launch of any propulsion components or systems, three

levels of propulsion integration were found to characterize all possibilities.
These are defined as full, partial, and nonlntegrated concepts to represent the

level of propulsion system/payload integration level prior to reactor startup.
Table 14 outlines the integration characteristics of each concept in terms of

the integration time and location of the disposal package elements; propel-

lant, upper stage vehicle, and reactor power system payload. The integration
issues identified for each concept are characterized in table 15, and a

description of the concept operational scenarios is given below.

The scenario for the fully-integrated concept is based on a single shuttle

launch of an integrated propulsion system (propellant plus upper stage) which

is then attached to the reactor power system prior to reactor startup. This

concept requires no orbital assembly of propulsion components, and both

propellant/upper stage and propulsion system/payload integration is conducted

without any reactor radiation dose rate constraints. However, the multl-year
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time duration between propulsion system/payload attachment and disposal launch
requires the use of a long shelf llfe storage propellant.

lhe scenario for the partlally-lntegrated concept is based on In-space

integration of all upper stage hardware to the reactor power system prior to

reactor startup wlth propellant integrated after reactor shutdown. Two options

are potentially feasible for propellant integration. In the first, loaded

propellant tanks would be attached to the upper stage structure; in the second

option the upper stage would include empty propellant tanks which would be

loaded by pumped propellant transfer. In either case, propellant integration
operations will be constrained by the restrictions imposed by the shutdown

reactor dose rate environment, however, either storable or cryogenic propellant
may be used.

lhe four options shown for the nonlntegrated concept are all based on

final payload and propulsion system integration after reactor shutdown, the

options differ only in the time of integration of propellant and upper stage.

In options A and B, propellant and upper stage are integrated before reactor

startup and are therefore limited to storable propellants and low energy des-
tlnatlons. Options C and D are characterized by propellant and upper stage

integration after reactor shutdown and can therefore use cryogenic or storable

propellants. This difference gives option C the capability of Earth escape
destination for the 300 kWe thether mount concept payload when used in combina-

tion with cryogenic propellant.

SUMMARY OF CHEMICAL PROPULSION CAPABILITY AND INTEGRATION

lhe assessment of chemical propulsion capability is conveniently summa-

rized in terms of requirements and recommendations for each disposal
destination.

For the low energy lO00 km Earth orbit destination, the use of a shuttle-

compatible upper stage, such as the solid rocket motor Payload Assist Module

(PAM) series, is recommended. Two methods of propulsion system/payload Inte-

gratlon are equally feasible. The fully-lntegrated concept provides a single
shuttle launch of the integrated propellant/upper stage to low Earth orbit

where it is attached in a single operation to the reactor power system payload

in a radlatlon-free environment prior to reactor startup. The major integra-

tion issue identified for the concept is the unknown effect of long-term expo-
sure of the propellant and the upper stage to the operating reactor radiation

and the space environment. An alternative method of propulsion system/payload

integration is option C of the nonlntegrated concept. This option also pro-

vides a single shuttle launch of the integrated propellant/upper stage to low

Earth orbit where it is integrated with the reactor power system payload after

shutdown. This eliminates the long-term exposure issue of the fully-integrated

method but requires propulsion system/payload integration in the radiation

environment of the shutdown reactor. This requirement is not considered to be

a major feasibility issue for EVA radiation exposure as shown previously.

For higher energy destinations chemical propulsion capability is limited

only by the number of shuttle launches required to place the propulsion system

into low Earth orbit. From a cost aspect, the combination of thether mount

installation and Earth escape destination is clearly the most attractive since

the propulsion system can be placed in low Earth orbit with a single launch of
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a shuttle-compatible upper stage vehicle (nonintegrated concept optlon C).
However, all installation concepts payloads can reach Earth escape destination
with the partially-integrated and nontntegrated option D concepts. Comparison
of issues for these concepts, as shown in table 15 reveals that both concepts
require one integration operation in the shutdown reactor radiation environment
and a total of two ln-space integration operations. The characteristic that
distinguishes the concepts from each other is the difference in the type of
propulsion components to be integrated in the shutdown radiation environment.
The partially-integrated concept requires only propellant integration, whlle
the nontntegrated concept requires integration of both the propellant and the
upper stage. From a component mass aspect both are approximately equivalent
since propellant is about 85 percent of the total propulsion vehicle mass.
However, from the operationally more important aspect of component volume, the
nontntegrated concept is less attractive because it includes the additional
volume of the upper stage. In addition, we have previously defined a propel-
lant integration option for the partially-integrated concept that was based on
propellant transfer by pumping into empty propellant tanks that have already
been integrated with the upper stage and payload prior to reactor startup.
lhis option is particularly attractive from an operational standpoint since the
integration requires only the attachment of fluid couplings. Further, from a
structural standpoint, it Is advisable to hard mount the propulsion system and
payload inside the framework of the space station five meter square boom. Thts
could easily be accomplished before reactor startup when the payload, upper
stage and empty propellant tanks are integrated. It is therefore concluded
that the partially-integrated concept, using pumpable liquid propellant, ls the
most attractive scenario for high energy destinations.

lhe liquid propellant to be used can be either storable or cryogenic. The

only criterion for selection examined in this study was that of propellant

mass. As shown in table 13, the higher specific impulse of cryogenic propel-

lant yields a significant mass savings of about 35 percent for Earth escape
destination. However, other selection criteria may be equally important. For

example, the potential liquld propellants include cryogenic hydrogen/oxygen,

storable blpropeilant NTO/MMH (nitrogen tetroxlde/monomethylhydrazlne), stor-

able monopropellant hydrazlne (N2H4) and storable water electrolyzed to gaseous

hydrogen/oxygen. The proposed use of water in space station operations may

have partlcular significance In propellant selection. The state-of-the-art of

high specific Impulse (3?0 sec) water electrolysis propulsion is proven In low
thrust rocket engines, and electrolysls for space and terrestrial llfe support

applications is well developed. In addition, the nontoxlclty and high density

properties of water make It an excellent candidate for mass make-up on any
volume-ilmlted shuttle payloads required for space station operations. There-

fore, the issue of propellant selection for high energy destinations should
remain unresolved untll further definition of water availability and synergism

wlth space station operations is established.
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TABLE I. - STUDY MATRIX

Installation concepts

Single 300 kWe tether
mount

Single 300 kWe boom
mount

Dual 150 kWe balanced

boom mount

Disposal destinations

Long llfe orbit
- I000 km

Solor orbit

- Earth escape
- circular heliocentric

- planetary swlng-by

Solar system escape

- hyperbolic trajectory

- Jupiter swlng-by

Solar impact
- direct

- Jupiter swlng-by

Lunar impact

Earth return

- controlled reentry

- shuttle recovery

Chemical propulsion
methods

Cryogenic propellant

Storable propellant

21



r-- :_ (J 4J

e-.l_
-_ o r-
o) ,4,-- (1)

O _ O'¢-

_ O'_ 4J
C_ O,e- E

k- ,-" 4-: -,"
cJ _ _ E

Z _ _

1-- O

e- t_ I,.-

r" O O'_

Z 4-_ _

I

O

4._ 4.J

Er

O o O

fNl _ r---

E

¢M

e-

U
e- O

¢M
r--

t_

n3

= (..)
4-_ -r-

-r" 0

0-_-_

0
"0
nO

t/1

(I)

f./3
¢-

_D

_0

¢.-
0
,¢=-

flO

4._

¢.-

4-,
¢...

0
E

t...

(I,)

0

¢,-.
0

.T-,
t..

m.,,, t,-
,.,--

O"

• t,..

L

wE _
¢"" ::3 q.)

_ O,--

e.,-O _,_

O _.j r"
O O O

22



TABLE Ill. - RADIATION EXPOSURE LEVELS - 300 kWe TETHER MOUNT CONCEPT

Integrated dose (rem)Activity
and

location

Operations inside

space station

Operations outside

space station (EVA)

Shuttle approach/

dock/departure

Shuttle fly-by

Total

Background

Dose rate (mrem/hr)

Reactor Total

7.I 2.3 9.4

9.0

6.0

6.0

2.3 11.3

2.3 8.3

3.2 9.2

Background

15.07

0.31

0.02

Reactor

4.88

0.08

0.01

Total

19.95

0.39

0.03

0

15.4 4.97 20.37

TABLE IV. - MASS STAIEMENT - 300 kWe TETHER CONCEPT

Item

300 kWe reactor power system without shield
Modified shadow shield
2-km tether

Total disposition mass

Ballast

Spare reactor power system
Attached tether

Attachment and ballast subtotal

lotal launch mass

Mass,

kg

6 800

2 300

1 400

I0 500

9 I00

1 400

lO 500

21 000
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TABLE V. RADIAIION EXPOSURE LEVELS - 300 kWe BOOM MOUNT CONCEPT

Activity
and

location

Operations inside
space station

Operations outside

space station (EVA)
Inside shadow

Outside shadow

Shuttle approach/
dock/departure

Shuttle fly-by

lotal

Dose rate (mrem/hr)

Background

7.1

9.0

9.0

6.0

Reactor

1.5

a330

5?

Total

8.6

10.5
166

336

63

Integrated dose (rem)

Background

15.07

0.29

0.02

0.02

6.0

Reactor

3.18

0.05
0.31

1.og

0.03

4.6615.4

Total

18.25

0.34

0.33

l .ll

0.03

20.06

aTime and trajectory average dose rate inside shuttle during approach or

departure.

TABLE Vl. - MASS STATEMENI - 300 kWe BOOM MOUNT CONCEPT

Item Mass,

kg

300 kWe reactor power system without shield 6 800

Shaped shield 25 500

Total disposition mass 32 300

l 020Attachment boom

Ballast

Spare reactor power system ballast
Attachment boom

Additional mass at l km

32 300
1 020

2 490

Attachment and ballast subtotal 36 830

Iotal launch mass 69 130

24



TABLE VII. - RADIATION EXPOSURE DOSE RATES AND ALLOWABLE

TIMES FOR EVA DETACHMEN1 OF 300 kWe REACIOR

POWER SYSTEM

Reactor

shutdown
tlmea

1 month

1 year

Total dose rate b

(mrem/hr) at
separation distance,

m

3 lO

21.8 I0.2

13.0 9.4

60

90

90

Allowable time (hours)
for an additional l rem

exposure at

separation distance,
m

3 I0 60

45.9

76.9

98.0

106.3

Ill.1

lll.1

alnflnlte reactor operation time assumed before
shutdown.

bIncludes background dose rate of 9 mrem/hr.

TABLE VIII. - RADIAl/ON EXPOSURE LEVELS - DUAL 150 kWe BOOM MOUNT CONCEPT

Activity
and

location

Operations inside
space statlon

Operations outside

space station (EVA)
Inside shadow

Outside shadow

Shuttle approach/

dock/departure

Shuttle fly-by

lotaI

Dose rate (mrem/hr) Integrated dose (rem)

Background Reactor Total Background Reactor Total

7.1 1.5 8.6 15.07 3.18 18.25

9.0

9.0

6.0

6.0

1.5
169

a365

162

I0.5

178

371

168

0.29

0.02

0.02

0

15.40

0.05

0.34

l.20

0.07

4.84
I

0.34

0.36

1.22

0.07

20.24

aTlme and trajectory average dose rate inside shuttle during approach or
departure.
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TABLE[X. MASS SIAIEMENI - DUAL 150 kWe BOOM MOUNT CONCEPT

Item Mass,

kg

Two 150 kWe reactor power systems without shield 8 000

Two shaped shield 33 900

Total dlspos_tlon mass a 41 900

Two attachment boom 3 400
Ballast 0

Attachment subtotal 3 400

Total launch mass b 45 300

aMay be d_sposed of in two separate packages of 20 950 kg
each.

bMay be launched in two separate packages of 22 650 kg
each.

TABLE X. - MASS SUMMARY FOR INSTALLATION CONCEPTS

Installation concept

300 kWe tether mount

300 kWe single boom mount
Dual 150 kWe boom mount

Individual

Total

Launch
mass,

kg

21 000

69 130

22 650

45 300

Minimum
number of

shuttle

launches

Disposal

mass,
kg

I0 500

32 300

20 950

41 900

P_CED_NG p/_CE ELANIf_ NOT FiL_ED
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TABLE XIIl. - PROPEI_LANI LAUNCH REQUIREMENIS FOR

DISPOSAL TO EARTH ESCAPE - ELLIPTICAL

SOLAR ORBII DESTINATION

Installation

concept

300 kWe tether

300 kWe boom

Dual 150 kWe boom

Number of shuttle launches

required to bring propellant
to 500 km low Earth orblt a

Isp = 450 sec

0.8

2.4

3.0

Isp = 350 sec

1.2

3.7

4.9

aI8 000 kg shuttle capabillty basis.

TABLE XIV. - CHARACTERIZATION OF INTEGRATION CONCEPTS

Concept Propulslon/payload elements integrated

integration at time and location
level before .......

reactor Before reactor startup After reactor shutdown

startup
On Earth In space On Earth In space

Full Propellant Payload None None

integration and upper
stage

._ .._

None NonePartial

integration

A

B

C

D

Not integrated Propellant

and upper

stage

None

m L , ..

None

None

Upper stage

and payload

None

Propellant

and upper

stage

None

None

None

None

Propellant

and upper
stage

None

Propellant

and payload

Payload

Payload

Payload

Propellant

upper stage
and

payload
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